Pronormality, Contranormality and Generalized Nilpotency in Infinite Groups

نویسنده

  • Leonid A. Kurdachenko
چکیده

This article is dedicated to some criteria of generalized nilpotency involving pronormality and abnormality. Also new results on groups, in which abnormality is a transitive relation, have been

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM

In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...

متن کامل

A Torus Theorem for Homotopy Nilpotent Groups

Nilpotency for discrete groups can be defined in terms of central extensions. In this paper, the analogous definition for spaces is stated in terms of principal fibrations having infinite loop spaces as fibers, yielding a new invariant we compare with classical cocategory, but also with the more recent notion of homotopy nilpotency introduced by Biedermann and Dwyer. This allows us to character...

متن کامل

On rational groups with Sylow 2-subgroups of nilpotency class at most 2

A finite group $G$ is called rational if all its irreducible complex characters are rational valued. In this paper we discuss about rational groups with Sylow 2-subgroups of nilpotency class at most 2 by imposing the solvability and nonsolvability assumption on $G$ and also via nilpotency and nonnilpotency assumption of $G$.

متن کامل

On transitivity of pronormality

This article is dedicated to soluble groups, in which pronormality is a transitive relation. Complete description of such groups is obtained.

متن کامل

On Groups with a Class-preserving Outer Automorphism

Four infinite families of 2-groups are presented, all of whose members possess an outer automorphism that preserves conjugacy classes. The groups in these families are central extensions of their predecessors by a cyclic group of order 2. In particular, for each integer r > 1, there is precisely one 2-group of nilpotency class r in each of the four families. All other known families of 2-groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003